Let the equal sides of the isosceles triangle be
a and base be b. So the three sides of the isosceles triangle would be a, a and b.
Perimeter (P) = 11 cm
a+a+b=11
2a=11-5
2a=6
a=6/2
a=3 cm
Area of isoseceles triangle is given by


Doubt Questions of CBSE Class 9th Students
Question : If x³+ax²+10-bx is divisible by (x-2) and (x-1) then find the values of a and b.
Doubt by Purvi
Solution :
p(x)=x³+ax²+10-bx
p(x)=x³+ax²-bx+10
Case I
g(x)=(x-2)
p(x) is divisible by g(x), it means g(x) must be a factor of p(x).
g(x)=0
x-2=0
x=2
p(2)=0
(2)³+a(2)²-b(2)+10=0
8+4a-2b+10=0
4a-2b+18=0
4a-2b=-18
2(2a-b)=-18
2a-b=-18/2
2a-b=-9 — (1)
Case II
g(x)=(x-1)
p(x) is divisible by g(x), it means g(x) must be a factor of p(x).
g(x)=0
x-1=0
x=1
p(1)=0
(1)³+a(1)²-b(1)+10=0
1+a-b+10=0
a-b+11=0
a-b=-11 — (2)
Subtracting equation (2) from equation (1)
2a-b-(a-b)=-9-(-11)
2a-b-a+b=-9+11
a+0=2
a=2
putting this value of a in equation (1)
2(2)-b=-9
4-b=-9
4+9=b
b=13
Hence, a=2 and b=13
a=2, b=13
Question : In Fig, if AB || CD || EF, PQ || RS, ∠RQD = 25° and ∠CQP = 60°, then ∠QRS is equal to
(A) 85°
(B) 135°
(C) 145°
(D) 110°
Doubt by veer
Solution :
AB || CD || EF (Given)
∠RQD = 25° and ∠CQP = 60° (Given)
∠QRS=?
∠ARQ=∠RQD =25° [Alternate Interior Angles]
∠ARQ=25° — (1)
∠CQP=∠SRB=60° [Alternate Exterior Angles]
∠SRB=60°
Now,
∠SRB + ∠SRA = 180° [Linear Pair]
60° + ∠SRA = 180°
∠SRA=180°-60°
∠SRA=120° — (2)
Adding equation (1) and (2)
∠ARQ+∠SRA=25°+120°
∠QRS = 145°
Hence, (C) 145°, would be the correct option.
Question : If x=1/(7-4√3), show that x²-14x+1=0 and hence evaluate x³-9x²-69x+7.
Doubt by Purvi
Solution :
x=1/(7-4√3)
Rationising the denominator
x=1/(7-4√3)×(7+4√3)/(7+4√3)
x=(7+4√3)/[(7)²-(4√3)²]
x=(7+4√3)/(49-48)
x=(7+4√3)/1
x=7+4√3
x²-14x+1=0
LHS
x²-14x+1
=[7+4√3]²-14[7+4√3]+1
=(7)²+(4√3)²+2(7)(4√3)-14(7)-14(4)√3+1
=49+48+56√3-98-56√3+1
=50+48-98
=98-98
=0
= RHS
LHS = RHS
Hence Proved.
Now
x²-14x+1=0
x²=14x-1— (1)
Also
x³=x².x
x³=(14x-1)x [∵ Using Equation (1)]
x³=14x²-x — (2)
Now
x³-9x²-69x+7
=14x²-x-9(14x-1)-69x+7
[Using Equation (1) and (2)]
=14x²-x-126x+9-69x+7
=14x²-196x+16
=14x²-196x+14+2
=[14x²-196x+14]+2
=14[x²-14x+1]+2
=14[0]+2 [∵x²-14x+1=0]
=0+2
=2
Hence, x³-9x²-69x+7=2
Question : The value of (√32 + √48) / (√8 + √12) is equal to
(a) √2
(b) 2
(c) 4
(d) 8
Doubt by Suraj
Solution :
(√32 + √48) / (√8 + √12)
=(√48 + √32) / (√12 + √8)
=(4√3 + 4√2) / (2√3 + 2√2)
Rationalising the denominator
=(4√3 + 4√2) × (2√3 - 2√2) / (2√3 + 2√2)×(2√3 - 2√2)
=[4√3(2√3 - 2√2) + 4√2(2√3 - 2√2)] / [(2√3)² - (2√2)²]
[∵(a+b)(a-b)=(a²-b²)]
=[8×3-8√6+8√6-8×2] / [12-8]
=[24-0-16] / 4
=[8]/4
=2
Hence, (b) 2, would be the correct option.