Pages

If x=1/7-4root3, show that x2-14x+1=0 and hence evaluate . . .

Question : If x=1/(7-4√3), show that x²-14x+1=0 and hence evaluate x³-9x²-69x+7.

Doubt by Purvi

Solution : 

x=1/(7-4√3)
Rationising the denominator

x=1/(7-4√3)×(7+4√3)/(7+4√3)
x=
(7+4√3)/[(7)²-(4√3)²]
x=
(7+4√3)/(49-48)
x=(7+4√3)/1
x=7+4√3

x²-14x+1=0

LHS

x²-14x+1
=[
7+4√3]²-14[7+4√3]+1
=(7)²+(4√3)²+2(7)(4√3)-14(7)-14(4)√3+1
=49+48+56√3-98-56√3+1
=50+48-98
=98-98
=0
= RHS

LHS = RHS 

Hence Proved. 

Now

x²-14x+1=0
x
²=14x-1— (1) 

Also 
x³=x².x
x³=(
14x-1)x [∵ Using Equation (1)]

x³=14x²-x — (2)


Now 

x³-9x²-69x+7
=14x²-x-9(14x-1)-69x+7
[Using Equation (1) and (2)]

=14x²-x-126x+9-69x+7
=14x²-196x+16
=
14x²-196x+14+2
=[14x²-196x+14]+2
=14[x²-14x+1]+2
=14[0]+2 [∵
x²-14x+1=0]
=0+2
=2

Hence, x³-9x²-69x+7=2