Doubt by Bhumika
Solution :
Let p(x) = x³+mx²+nx+6
(x-2) is a factor of p(x)
x-2=0
x=2
p(2)=0
(2)³+m(2)²+n(2)+6=0
8+4m+2n+6=0
4m+2n=-14
2(2m+n)=-14
2m+n=-14/2
2m+n=-7 — (1)
x=2
p(2)=0
(2)³+m(2)²+n(2)+6=0
8+4m+2n+6=0
4m+2n=-14
2(2m+n)=-14
2m+n=-14/2
2m+n=-7 — (1)
Also
When p(x) is divided by (x-3) then remainder is 3.
x-3=0
x=3
p(3)=3
(3)³+m(3)²+n(3)+6=3
27+9m+3n+6=3
9m+3n+33=3
9m+3n=3-33
9m+3n=-30
3(3m+n)=-30
3m+n=-30/3
3m+n=-10 — (2)
Subtracting equation (2) from (1)
x=3
p(3)=3
(3)³+m(3)²+n(3)+6=3
27+9m+3n+6=3
9m+3n+33=3
9m+3n=3-33
9m+3n=-30
3(3m+n)=-30
3m+n=-30/3
3m+n=-10 — (2)
Subtracting equation (2) from (1)
2m+n-(3m+n)=-7-(-10 )
2m+n-3m-n=-7+10
-m+0=3
2m+n-3m-n=-7+10
-m+0=3
-m=3
m=-3
m=-3
Putting m=-3 in equation (1)
2(-3)+n=-7
-6+n=-7
n=-7+6
n=-1
-6+n=-7
n=-7+6
n=-1
∴ m=-3 & n=-1